

Raychem ГРЕЮЩИЕ КАБЕЛИ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ

НОМЕНКЛАТУРА ДЛЯ СИСТЕМ ОБОГРЕВА С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ — ГРЕЮЩИЕ КАБЕЛИ В БУХТАХ

КОНСТРУКЦИЯ ГРЕЮЩЕГО КАБЕЛЯ

Греющие кабели Raychem с минеральной изоляцией подходят для широкого спектра областей применения. Более подробная информация по каждому конкретному типу греющих кабелей приведена в таблицах технических характеристик.

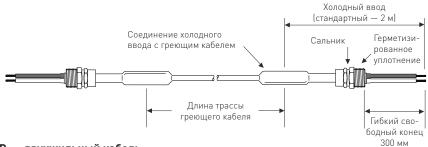
ВЫПУСКАЮТСЯ РАЗЛИЧНЫЕ ТИПЫ КАБЕЛЕЙ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ:

нсс/нсн:	Греющие кабели с медной оболочкой
HDF/HDC:	Греющие кабели с медно-никелевой оболочкой
HSQ:	Греющие кабели с оболочкой из нержавеющей стали
HAx:	Греющие кабели с оболочкой из сплава 825
HIQ:	Греющие кабели с оболочкой из инконеля

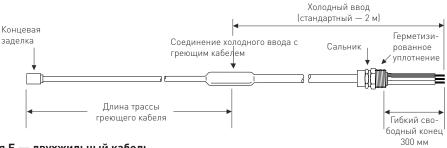
ГРЕЮЩИЕ КАБЕЛИ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ

ГРЕЮЩИЕ КАБЕЛИ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ ВЫПУСКАЮТСЯ С РАЗНОЙ КОНСТРУКЦИЕЙ, КОТОРАЯ ЗАШИФРОВАНА В ОБОЗНАЧЕНИИ ИЗДЕЛИЙ В СООТВЕТСТВИИ С НИЖЕПРИВЕДЕННОЙ НОМЕНКЛАТУРОЙ:

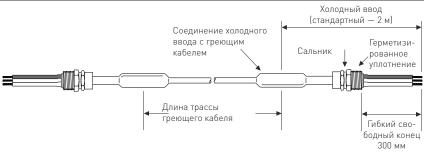
Пример: HCHH1L2000BK


Н	Маркировка	Н означает «греющий кабель»						
С	Материал оболочки	${f C}$ — медь,						
		${f D}$ — медно-никелевый сплав,						
		S — нерж. сталь,						
		A — сплав 825,						
		I — инконель						
Н	Материал жилы кабеля	С — медь,						
	(примеры)	H — медный сплав и различные другие металлические сплавы						
Н	Материал защит. оболочки:	H — ПВД, F — ФЭП						
	(опция только для кабелей с медной оболочкой)							
1	Количество жил	1 или 2						
L	Напряжение питания	См. таблицы технических характеристик конкретных кабелей						
2000	Сопротивление жил	Сопротивление в Ом/км, например 2000 = 2000 Ом/км						
BK	Цвет оболочки (опционально)	${\sf BK}$ — черный, ${\sf OR}$ — оранжевый						

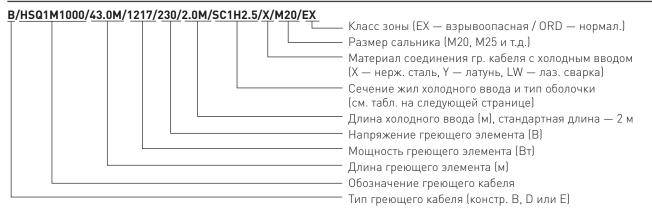
Греющие элементы с минеральной изоляцией состоят из греющего кабеля, соединения холодного ввода с греющим кабелем, а также холодного ввода с соответствующим герметизированным уплотнением и кабельным сальником. Соединение холодного ввода с греющим кабелем и герметизированное уплотнение являются чрезвычайно важными для обеспечения безопасности и надежности эксплуатации.


Pentair настоятельно рекомендует использовать греющие элементы с заводскими соединениями, обеспечивающими стабильно высокое качество. Для греющих кабелей с оболочкой из нержавеющей стали (HSQ), инконеля 600 (HIQ) и сплава 825 (HAx) доступна опция с лазерной сваркой соединений и/или концевой заделкой, обеспечивающие высочайшее качество соединений и самую высокую надежность. Мы рекомендуем использовать лазерную сварку соединений и/или концевую заделку, когда рабочая или допустимая температура превышает 300°С. Для применения во взрывоопасных зонах греющие элементы с минеральной изоляцией должны быть собраны Pentair или авторизированным представителем.

КОНФИГУРАЦИИ (КОНСТРУКЦИИ) ГРЕЮЩИХ КАБЕЛЕЙ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ


Конструкция В — одножильный кабель

Конструкция D — двухжильный кабель


Конструкция Е — двухжильный кабель

ГРЕЮЩИЕ КАБЕЛИ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ

Длина холодных вводов включает гибкие свободные концы длиной 300 мм. Кабели заземления поставляются как стандартные для всех греющих элементов. Кабельные сальники поставляются с шайбами и контргайками. Любые изменения стандартной конфигурации выполняются по дополнительному требованию.

ОБОЗНАЧЕНИЕ ГРЕЮЩИХ КАБЕЛЕЙ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ ДЛЯ ЗАКАЗА

При заказе необходимо указать полное обозначение греющего элемента с минеральной изоляцией. Для взрывоопасных зон необходимо также предоставить информацию о температурной классификации зон и температурных данных системы обогрева (макс. температуру оболочки) для правильного представления данных на маркировочных табличках, прикрепляемых к греющим элементам на заводе.

Любая недостающая информация может привести к потенциальным задержкам при выполнении заказа.

холодные вводы с мин. изоляцией

Выпускаются различные типы холодных вводов Raychem с минеральной изоляцией:

СС: медная оболочка, медные жилы

ССН: медная оболочка, покрытая ПЭВП, медные жилы

DC: медно-никелевая оболочка, медные жилы SC: оболочка из нерж. стали, медные жилы IC: оболочка из инконеля, медные жилы AC: оболочка из сплава 825, медные жилы

При выборе холодного ввода с минеральной изоляцией следует учитывать химические воздействия, которым он будет подвергаться, а также номинальный ток. Pentair обычно рекомендует использовать для холодного ввода ту же оболочку, что и для греющего кабеля, или лучшую. Холодные вводы обычно выбираются в зависимости от рабочей силы тока греющего элемента при поддерживаемой температуре. Для более высоких температур сила тока может быть намного выше во время переходной пусковой фазы. Если требуется частый разогрев с низких температур, мы рекомендуем производить выбор холодного ввода, основываясь на пусковом токе.

СОЕДИНЕНИЯ ХОЛОДНОГО ВВОДА С ГРЕЮЩИМ КАБЕЛЕМ

Соединение греющего кабеля и холодным вводом — один из наиболее критичных элементов для обеспечения надежности греющих элементов с минеральной изоляцией. Для кабелей и холодных вводов с различными материалами оболочки выпускаются различные соединения.

Материал оболочки греющего кабеля	Материал стандартного соединения, паянного твердым припоем	Материал соединения для элементов с лазерной сваркой
Медь	Латунь	_
Медно-никелевый сплав	Латунь для холодных вводов из меди/никеля	_
Медно-никелевый сплав	Нерж. сталь для холодных вводов из нерж. стали	-
Нерж. сталь	Нерж. сталь	Нерж. сталь
Инконель	Нерж. сталь	Специальный сплав
Сплав 825	Нерж. сталь	Специальный сплав

Соединения греющего кабеля с холодным вводом с лазерной сваркой не выпускаются для греющих кабелей с оболочкой из меди или медно-никелевого сплава.

Номенклатура греющих кабелей с минеральной изоляцией

ГРЕЮЩИЕ КАБЕЛИ С МИНЕРАЛЬНОЙ ИЗОЛЯЦИЕЙ

ТАБЛИЦА ВЫБОРА ХОЛОДНЫХ ВВОДОВ

Сечение	Число жил	Обозначение холодного ввода	Диаметр, мм	Номин. ток, А	Стандарт. сальник
1,0	2	AC2H1.0	7,3	18	M20
2,5	1	CC1H2.5	5,3	34	M20
		DC1H2.5	5,3	34	M20
		SC1H2.5	5,3	34	M20
		AC1H2.5	5,3	34	M20
2,5	2	AC2H2.5	8,7	28	M20
	1	CC1H6	6,4	57	M20
6,0		DC1H6	6,4	57	M20
		SC1H6	6,4	57	M20
		AC1H6	6,4	57	M20
6,0	2	AC2H6	14,0	46	M32
10.0	1	CC1H10	7,3	77	M25
10,0		DC1H10	7,3	77	M25
	1	CC1H16	8,3	102	M25
16,0		DC1H16	8,3	102	M25
		AC1H16	8,3	102	M25
25,0	1	CC1H25	9,6	133	M32
		AC1H25	10	133	M32
35,0	1	CC1H35	10,7	163	M32

Сальники из латуни являются стандартными для всех греющих элементов.

Таблица выбора холодных вводов не описывает все возможные комбинации (сальники из других материалов, других размеров, дополнительные кожухи из ПВХ и т.д.); более подробную информацию можно получить в местном представительстве nVent

Для концевой заделки на площадке и ремонта холодных вводов, настоятельно рекомендуется использовать двойные холодные вводы с заводской заделкой. Более подробная информация приведена в разделе «Комплектующие».